Тюнинг двигателя

Карбюратор

Теория работы
Вероятно, ни о какой другой детали автомобиля не сложено столько всякого рода "сказок" и историй, как о карбюраторах. Карбюраторы просто смешивают топливо и воздух и управляют количеством топливовоздушной смеси, поступающим в двигатель в любой момент его работы. Однако, способ, которым это делается, может оказаться довольно сложным, особенно на автомобилях с контролем состава выхлопных газов.
Полезно немного узнать об основах работы карбюратора. Несмотря на распространенное мнение, двигатели в действительности не всасывают топливо из карбюратора. У всех карбюраторов есть диффузор, который представляет собой сужение воздушной горловины карбюратора. Когда воздух проходит через это сужение, там возникает спад давления (разрежение). Небольшое отверстие установлено в этом месте для подачи топлива. Атмосферное давление, действуя на топливо, выдавливает его из поплавковой камеры карбюратора через это отверстие в горловину карбюратора, откуда топливо попадает во впускной коллектор и затем в цилиндры двигателя. Двигателю требуется топливовоздушная смесь разного состава в разных режимах его работы, когда он холодный, прогревается, работает на холостом ходу, в области средних оборотов и под тяжелой нагрузкой. В карбюраторах имеется несколько систем, которые помогают ему работать в различных условиях. В дополнение к системам, описываемым далее, имеются некоторые детали, такие как соленоиды, для прекращения подачи топлива и гасители скачков давления, которые используются для специальных применении. Эти узлы были установлены по тем или иным причинам и их снятие может оказать заметное воздействие на работу двигателя.
Поплавковая камера
Система поплавка поддерживает постоянным уровень топлива в поплавковой камере карбюратора. Она работает следующим образом. Когда уровень топлива понижается, поплавок опускается, открывает игольчатый клапан и позволяет топливу поступать в поплавковую камеру. Путем поддержания уровня топлива в определенных рамках соотношение воздух/топливо в смеси поддерживается более точно. Для лучшей работы уровень поплавка должен быть отрегулирован в соответствии с техническими данными завода-изготовителя.
Воздушная заслонка
Система воздушной заслонки позволяет заводить холодный двигатель путем обогащения топливовоздушной смеси. Воздушная заслонка перекрывает подачу воздуха в карбюратор и, соответственно, в двигатель поступает больше топлива, при этом обороты холостого хода уменьшаются. Поэтому к системе привода дроссельной заслонки добавляется система увеличения оборотов холостого хода для их повышения при прогреве двигателя. Для обычного автомобиля нет необходимости изменять эту систему.
Система холостого хода
Система холостого хода обеспечивает подачу топлива, необходимого для работы двигателя на низких оборотах, когда главная дозирующая система не работает. Регулировочные винты позволяют изменять соотношение воздух/топливо в режиме холостого хода (на многих автомобилях с контролем состава выхлопных газов регулировочные винты опломбированы заглушками). Многие механики считают, что эта регулировка изменяет состав смеси во всем диапазоне оборотов, но это не так.
Ускорительный насос
Ускорительный насос обеспечивает впрыск дополнительного топлива при резком открывании дроссельной заслонки для предотвращения остановки двигателя и перебоев в его работе при разгоне автомобиля. Если посмотреть внутрь горловины карбюратора и быстро передвинуть тяги привода дроссельной заслонки, топливо должно брызнуть из выходных отверстий ускорительного насоса.
Переходная система
Переходная система обеспечивает переходный режим между холостым ходом и работой главной дозирующей системы. Многие карбюраторы имеют каналы или отверстия переходной системы рядом с пластинами дроссельных заслонок, которые подают топливо при их открывании во время открывания дроссельных заслонок.
Главная дозирующая система
Главная дозирующая система дозирует подачу топлива к двигателю при движении автомобиля со средними скоростями. Она состоит из главных топливных жиклеров, главного распределителя и диффузора. Главный топливный жиклер расположен в канале между поплавковой камерой карбюратора и главным распылителем. Главный распылитель обычно состоит из трубки с маленькими отверстиями для воздуха. Воздух здесь смешивается с топливом для образования распыленного топливовоздушного "тумана". Главный топливный жиклер определяет, сколько топлива будет смешано с заданным количеством воздуха. Механики-настройщики используют главные топливные жиклеры различных размеров для калибровки карбюратора с двигателем в различных режимах его работы. Путем использования жиклеров большего размера смесь обогащается. И наоборот, установка жиклеров меньшего размера обедняет смесь. Двигатель, работающий на больших высотах, должен быть оснащен жиклерами меньшего размера по сравнению с тем же двигателем, но работающим на уровне моря.
Экономайзер
Двигателю нужна более богатая топливовоздушная смесь, когда он работает под нагрузкой по сравнению с тем, когда он просто работает в "крейсерском" режиме. Система экономайзера обеспечивает подачу дополнительного топлива, когда двигатель работает под нагрузкой и при полном открывании дроссельной заслонки.
В различных марках карбюраторов используются разные типы систем экономайзера. Наиболее распространенными являются экономайзеры диафрагменного типа, калибровочные стержни, байпасные жиклеры или клапан экономайзера.
Диафрагменные экономайзеры устанавливаются на карбюраторы HOLLEY и некоторые карбюраторы FORD MOTORCRAFT. Когда вакуум во впускном коллекторе достигает определенного значения, клапан открывается, позволяя дополнительному топливу поступать к двигателю. Некоторые модели имеют двухэтажные клапаны для обеспечения более точной дозировки. Клапаны экономайзера подбираются в соответствии с величиной давления открывания, измеряемой в миллиметрах рт. ст. В соответствии с режимом работы может подбираться клапан экономайзера. Двигатели, которые обычно выдают низкий вакуум, должны оснащаться экономайзерами, которые открываются при малых значениях вакуума.
Дозирующие стержни движутся внутрь и наружу в калиброванных отверстиях (обычно в главных топливных жиклерах) в соответствии с вакуумом впускного коллектора. Когда двигатель находился под нагрузкой, и вакуум снижается, то стержни выдвигаются из главных топливных жиклеров для увеличения подачи топлива.
Байпасные жиклеры экономайзера выполняют те же функции, что и дозирующие стержни, за тем исключением, что они имеют свой собственный жиклер или клапан экономайзера.
Учитывая все вышеизложенное, становится ясным, что карбюратор имеет очень большое значение для двигателя. Когда с двигателем малого рабочего объема используется карбюратор с большим диффузором, то необходимый вакуум и распыление топлива обеспечиваются только в самом "верху" диапазона оборотов, если вообще достигаются. Мощность, реакция на перемещение дроссельной заслонки и общие рабочие характеристики двигателя будут ухудшены. Может быть и так, что карбюратор слишком мал. Тогда двигатель может хорошо работать на низких и средних оборотах, но ограниченный поток и диффузоры малого диаметра уменьшают мощность на высоких оборотах. Общая информация
Если ваш автомобиль был оснащен одним или несколькими карбюраторами, то вам нужно рассмотреть все факторы перед тем, как отказаться от старого карбюратора (карбюраторов). Если вы планируете реставрацию, то нужно оставить прежний карбюратор.
Заводские агрегаты из трех двухкамерных карбюраторов можно эффективно использовать в дальнейшем — их можно аккуратно отремонтировать и заменить некоторые жиклеры.
Автомобили с контролем выхлопных газов составляют отдельную проблему. Если состав выхлопных газов ухудшен, то нужно использовать исходный тип карбюратора или допустимую замену. Последние модели с датчиками содержания кислорода, в выхлопных газах заменить особенно трудно.
В связи с тем, что современные карбюраторы становятся очень сложными и малопонятными агрегатами, все большее распространение получают системы впрыска топлива. Вместе с тем, даже самая дешевая переделка системы питания с карбюраторной на инжекторную стоит в несколько раз больше, чем хороший карбюратор.
Большинство автомобилей повседневного применения с форсированными двигателями V8 используют 4-камерные карбюраторы. Здесь мы ограничимся рассмотрением этих устройств.
4-камерные карбюраторы обеспечивают хорошую работу двигателя во всех режимах. При небольшом открывании дроссельной заслонки и в стандартном режиме движения двигателей работает на передних двух камерах. Это поддерживает скорость воздушного потока через карбюратор относительно высокой для оптимального его смешивания с топливом. Когда педаль акселератора прижимается почти до пола, то открываются две задние камеры, что превращает карбюратор в устройство, обеспечивающее высокий поток. Существует несколько основных типов популярных 4-камерных карбюраторов. Обычные 4-камерные карбюраторы имеют размеры отверстий первичных и вторичных камер, примерно равные друг другу. Такие карбюраторы широко распространены и хорошо подходят для большинства применений.
Карбюраторы с различными размерами камер разработаны для обеспечения переходных характеристик 4-камерных карбюраторов. Передние (первичные) камеры заметно меньше, чем задние (вторичные) камеры, поэтому улучшается экономия топлива в режиме холостого хода и на низких оборотах. Когда открываются задние камеры, обеспечивается прирост мощности (расход топлива тоже заметно возрастает).
Карбюраторы с двойными ускорительными насосами имеют отдельные ускорительные насосы на первичной и на вторичной камерах карбюратора. Это уменьшает вероятность "провалов" при разгоне, но увеличивает расход топлива и выброс токсичных веществ.
Карбюраторы с двойным питанием фирмы HOLLEY имеют два соединения для подачи топлива, по одному на каждую поплавковую камеру.
Эта конструкция заимствована от гоночных двигателей, когда в двигатель должно подаваться большое количество топлива. Она хорошо работает на двигателях с большим рабочим объемом и большой мощностью, но на двигателях небольшого рабочего объема такой карбюратор применять нет смысла.
Основы выбора карбюратора
Благодаря тому, что за многие годы было создано большое количество различных двигателей, были выпущены различные системы карбюрации для двигателей V8. Слово "система" здесь относится к связи между карбюратором и впускным коллектором. Конструкция впускного коллектора влияет на то, как карбюратор ощущает импульсы потока поступающей смеси и если в конструкцию впускного коллектора были внесены какие-либо существенные изменения, то, почти наверняка, в работу карбюратора тоже потребуется внести изменения. Имея в виду требования к системам, начнем исследовать, какой карбюратор обеспечит лучшие результаты при установке на ваш двигатель.
Так как нашей основной целью является максимальная мощность, мы должны выбрать карбюратор, который имеет как можно большую емкость по потоку (измеряемую в кубических метрах в минуту), что связано с получением эффективных характеристик при работе с частично закрытой дроссельной заслонкой и на низких оборотах. Выбор карбюратора был долгое время спорным делом, наши рекомендации помогут избежать ошибок. Подбор правильного карбюратора всегда является результатом, как интуиции, так и конкретных знаний. Большинство современных двигателей оснащены на заводе карбюраторами с относительно малым диаметром диффузора, а также имеющими ограниченную емкость по воздушному потоку. Это особенно важно для обеспечения хорошей приемистости при частично и полностью открытой дроссельной заслонке, особенно при низких оборотах двигателя. Однако, жертвой будет мощность, и большинство стандартных двигателей обычно показывает заметное улучшение мощности при установке системы карбюрации, имеющей большую емкость по воздушному потоку.
Карбюрация для форсированных двигателей повседневного использования в некоторых случаях является наиболее критичной к изменениям. Кроме оптимизации крутящего момента и мощности, карбюратор такого двигателя должен обеспечивать приемистость и топливную эффективность.
· Он должен постоянно обеспечивать нужное соотношение воздух/ топливо.
· Он должен тщательно распылять топливо н равномерно подавать его в воздушный поток
· Он должен подавать образовавшуюся смесь во впускной коллектор так, чтобы все цилиндры получали одинаковый объем смеси.
· Он должен все это надежно делать во всем диапазоне режимов работы двигателя, при полностью или частично открытой дроссельной заслонке.
Чтобы начинать удовлетворять эти требования, мы должны подобрать карбюратор, который имеет диффузоры, достаточно малые для того, чтобы поддерживать достаточную скорость воздушного потока даже на низких оборотах. Так как скорость потока воздуха через диффузор прямо пропорциональна разрежению, которое вызывает вытекание топлива, недостаточная скорость воздуха выдаст несоответствующее разрежение (вакуум). Это неизбежно приведет к плохой точности дозировки и распыления топлива, результатом чего будет плохая приемистость и малый крутящий момент при низких оборотах двигателя.
В целях достижения максимальной скорости воздуха при частично открытой дроссельной заслонке и поддержания хорошего потока при полном открывании дроссельной заслонки, многие 4-камерные карбюраторы имеют малые диффузоры в первичных камерах и большие диффузоры — во вторичных. Вторичные камеры не начинают открываться, пока воздушный поток достаточно высок для получения сильного вакуума и эффективной дозировки. Эта особенность открывания, обеспечиваемая с помощью специального последовательного привода или, что более эффективно, с помощью вакуумного управления работой вторичной камеры, является обычной на большинстве промышленных четырехкамерных карбюраторов. Однако, некоторые карбюраторы форсированных двигателей, в частности, предназначенных для использования на специальных "гоночных" впускных коллекторах, скорее всего, имеют синхронное открывание всех 4-х камер. В гоночных условиях мало требуется работа двигателя с частично открытой дроссельной заслонкой при малых оборотах. Фактически, многие из этих карбюраторов имеют модификации в главной дозирующей системе для 6п-тимнзации соотношения воздух/топливо, когда используется 2 карбюратора совместно с распределительными валами с большим подъемом и "большой продолжительностью открывания клапанов. Эти карбюраторы не для повседневной езды. Если вы их установите, на обычный автомобиль, то вы будете бесконечно пытаться заставить их работать без особого успеха. Форсированный двигатель для повседневной езды должен иметь возможность работы во всех режимах. Это означает, что нужно выбрать карбюратор такого типа и размера, чтобы он обеспечивал крутящий момент на низких оборотах и мощность на высоких оборотах.

Распределительный вал и привод клапанов

Распределительные валы
Распределительный вал (иногда называемый просто распредвалом), более чем какая-либо из других деталей двигателя влияет на выбор и работу практически каждой системы двигателя. Заметим, что распределительный вал непосредственно влияет на системы карбюрации, впуска и выпуска газов; однако, он также сильно влияет па конструкцию механизма привода клапанов, на оптимальную степень сжатия и, в меньшей степени, даже на конструкцию шасси и трансмиссии. Проще говоря, конструкция распредвала определяет выходную мощность двигателя при частично или полностью открытой дроссельной заслонке, и выбор этой детали является одним из наиболее важных решений, которые может принять двигателестроитель.
Выбор распредвала может на первый взгляд показаться довольно простым. Справедливо то, что поиск функционирующего распредвала в реальности не является проблемой, но поиск и установка оптимального распредвала для конкретных применений является намного более сложной. К счастью, многие производители распределительных валов затрачивают большие суммы денег на исследования распредвалов и их развитие, и они предлагают результаты своих трудов потребителям. Таким образом, хотя для меня будет и непрактичным показать вам, как сконструировать оптимальный профиль кулачков распредвала для своего двигателя, я могу показать вам, как подобрать распредвал, который будет хорошо работать в конкретных условиях. Цель этой главы — дать вам информацию, которая может вам потребоваться для того, чтобы сделать правильный выбор.
Для того чтобы понять факторы, заключенные в конструкции распредвала и влияющие на ею выбор, необходимо полное представление об основах работы двигателя. Лучшим способом понять эти основы будет вернуться к началу.
Основы работы распределительного вала
Четырехтактный цикл Отто
Подавляющее большинство современных автомобилей оснащены двигателями, работа которых основывается на так называемом цикле Отто. Доктор Николаус Отто открыл свой 4-тактнын двигатель в 1876г. и он до настоящего времени является основой практически всех современных автомобильных поршневых двигателей. Как определяется классической теорией 4-тактного цикла Отто, впускной клапан открывается, когда поршень находится в верхней мертвой точке (ВМТ), т.е. в верхней точке своего хода в цилиндре. Этот момент соответствует началу такта впуска, при котором смесь воздуха и топлива втягивается в цилиндр через впускную систему.
Когда поршень — в нижней мертвой точке (НМТ),— такт впуска заканчивается и впускной клапан закрывается. Это конец первого из тактов Отто. Второй такт начинается, когда поршень движется вверх в отверстии цилиндра, а впускной и выпускной клапаны закрываются. При этом такте поступившая рабочая смесь сжимается в цилиндре, поэтому этот такт и называется тактом сжатия. Свеча зажигания воспламеняет смесь, когда поршень снова достигает ВМТ и в этот момент начинается такт рабочего хода (расширения) — третий такт цикла Отто. Так как горящая топливовоздушная смесь расширяется, то давление, создаваемое в цилиндре, толкает поршень вниз, и он передает свою энергию коленчатому валу, заставляя его вращаться. Поршень достигает HMT в конце цикла рабочего хода, когда открывается выпускной клапан. При этом начинается финальный такт, называемый выпуском. Теперь поршень снова движется вверх, вытесняя отработанные газы через открытый выпускной клапан в выпускную систему. Когда поршень снова достигает ВМТ, выпускной клапан закрывается. Открывание впускного клапана сигнализирует о начале следующей серии тактов 4-тактного цикла Отто. Быстро сменяющиеся циклы (24.000 в минуту на высоких оборотах) производят тот продукт, который мы исследуем здесь — мощность двигателя.
Однако идеальный цикл Отто для бензинового двигателя работает только в теории. Общий смысл может указать, что клапаны должны открываться и закрываться в ВМТ и в НМТ, в начале и в конце каждого такта. Однако, за исключением механической непрактичности постоянного открывания и закрывания клапанов, динамичный поток газов имеет такие свойства, которые не поддаются пониманию с точки зрения здравого смысла. При движении с высокими скоростями эти легкие пары имеют характеристики тяжелой жидкости. Они имеют измеримую массу и энергию, которые соответствуют любому движущемуся объекту. Эти факторы должны учитываться в конструкции любого распредвала.
Реальная динамика потока газов
На ранних стадиях развития двигателей, когда обороты коленчатого вала редко превышали 1000 об/мин, конструкторы двигателей были больше озабочены их надежностью, чем мощностью. Однако успехи в металлургии и нефтехимии позволили более не считать надежность главной целью конструкторов: в это время усилия инженеров были сконцентрированы на получении большей мощности. В этот период конструирования двигателей, фазы работы клапанов по-прежнему настраивались так, чтобы они начинались очень близко к "идеальным" моментам ВМТ и НМТ. Однако вскоре было открыто, что более высокие скорости открывания и закрывания уменьшают помехи, которые головки клапанов оказывают входящему и выходящему потоку газов. Это увеличит количество топлива, поступающего в двигатель и, соответственно, мощность. Однако, несмотря на улучшение характеристик металлов, скорости работы клапанов поддерживались в пределах механических характеристик клапанных пружин, кулачков распределительного вала и других деталей механизма привода клапанов. Эти пределы значительно уменьшают выходную мощность, т. к. при увеличении оборотов двигателя для работы клапанов остается очень мало времени, а уменьшение времени открывания и закрывания клапанов даже из практических соображений заметно уменьшает плотность рабочей смеси в цилиндре.
Конструкторы двигателей быстро обнаружили, что можно уменьшить потери, вызванные пределами, ограничивающими продолжительность открывания и закрывания клапанов путем увеличения продолжительности тактов работы клапанов.
Открывание впускного клапана немного раньше момента, когда поршень достигает ВМТ и закрывание его после НМТ (обеспечивающие продолжительность открывания клапана более 180° поворота коленчатого вала) увеличивают мощность. Если вы спросите сами себя, как это может помочь, так как поршень двигался в неправильном направлении для нужного потока впускаемой смеси, то это будет хорошим вопросом. Ответ состоит в том, что недостатки этих "несоответствующих" фаз работы клапанов были более чем скомпенсированы некоторыми преимуществами. Во-первых, клапан полностью открывается лишь на малый срок в эти периоды, так что потенциал для обратного потока минимален. Во-вторых, поршень движется намного медленнее рядом с ВМТ и НМТ, что еще больше уменьшает тенденцию для обратного потока. В-третьих, и это самое главное, более ранние и более поздние фазы работы впускных и выпускных клапанов дают клапанам "горячий старт" на кривых их подъема, что позволяет им отойти дальше от своих седел при всех тактах впуска и выпуска.
Имеются дополнительные динамические эффекты, которые мы обсудим далее, но главным результатом увеличения фаз работы клапанов за пределами ВМТ/НМТ является то, что получено существенное улучшение возможностей наполнения цилиндров и реализуется потенциал мощности.
Подбор фаз работы клапанов
Увеличение фаз работы клапанов полезно, но это тонко сбалансированная операция. К примеру, удержание впускного клапана открытым, после того как поршень достиг нижней точки такта впуска практично по нескольким причинам:
· Поток при низких величинах подъема клапана минимален;
· Даже если коленчатый вал может повернуться на значительное число градусов, поршень не сдвинется вверх в отверстии цилиндра намного;
· Цилиндр обычно не наполняется полностью, т. с. частичный вакуум продолжает втягивать смесь в двигатель.
Однако эти преимущества вскоре исчезают, если такт впуска увеличивается слишком сильно. В некоторый момент поршень, движущийся вверх в отверстии цилиндра, начинает вжимать некоторую часть уже втянутой рабочей смеси обратно во впускной коллектор. Если продолжительность открывания клапана увеличивается, то мощность начнет слабеть, особенно на низких оборотах.

Увеличение продолжительности выпуска дает подобные преимущества в мощности и подобные ограничения. Открывание выпускного клапана немного раньше НМТ позволяет большей части отработанных газов с высоким давлением выйти самостоятельно, т. е. они выдуваются перед тем, как остальные выдавливаются движением поршня. Это уменьшает давление на поршень, которое сокращает потери на прокачивание и улучшает мощность. В заключение, подобно впускному клапану, положения более раннего открывания и более позднего закрывания клапана относительно седла при такте выпуска уменьшают сопротивление между клапаном и головкой и улучшают характеристики потока. Однако, если выпускной клапан открывается слишком рано, сжатые газы, которые могли бы давить на поршень и вырабатывать мощность, будут освобождаться слишком быстро, рассеивая потенциально полезную энергию.
Теория перекрытия клапанов
Когда впускной клапан открывается раньше, а выпускной клапан закрывается поздно, имеется период времени, когда оба клапана открыты. Этот период перекрытия клапанов имеет место, когда поршень находится около ВМТ. Открывание обоих клапанов одновременно может не показаться хорошей идеей, однако, такая технология сжимает движущуюся массу потока выхлопных газов как своеобразный "пылесос", чтобы вытянуть оставшиеся газы. Фактически, этот эффект пылесоса такой сильный, что он также помогает начать впуск потока. Этот более ранний впускной поток, вызванный энергией выхлопных газов, называется продувкой, и он улучшает наполнение цилиндра и увеличивает мощность, особенно на высоких оборотах. Тогда как чрезмерное перекрытие клапанов уменьшает крутящий момент на низких оборотах, потери уменьшаются, когда продолжительность перекрытия настраивается в соответствии с применением — примерно от 40" для обычного распредвала и примерно до 85° для специального профиля.
Распределительные валы с короткой продолжительностью тактов, разработанные для работы при низких оборотах двигателя, почти всегда имеют короткие периоды перекрытия клапанов. Эти распределительные валы обеспечивают хорошие значения мощности двигателя на низких оборотах, так как фазы работы клапанов не слишком удалены от фаз ВМТ/НМТ. Однако, если вы проводите исследования по получению большей мощности двигателя, не увеличивая число оборотов, вы обнаружите, что двигатель быстро достигнет предела, вызываемого ограничениями по впуску из-за фаз газораспределения распредвала. Когда в двигателе есть баланс между эффективностью впуска и фазами работы распредвала, за исключением использования турбонаддува или впрыска окиси азота, единственный путь увеличения мощности — увеличение оборотов двигателя, при которых достигается максимальная мощность. Эти обороты могут быть достигнуты тогда, когда фазы газораспределения распредвала изменяются для оптимизации эффективности двигателя при этих высоких оборотах. Это неизбежно означает увеличение продолжительности тактов и перекрытия клапанов, сопровождаемое уменьшением крутящего момента на низких оборотах.
Это уж слишком
Когда фазы работы распредвала включают длительные такты, высокий подъем и большие периоды перекрытия клапанов, что является обычным у распредвалов гоночных двигателей, двигатель может работать очень плохо при полностью открытой дроссельной заслонке в области ниже 4000 об/мин или даже выше. Эта нестабильность происходит из-за большого перекрытия между началом такта впуска и концом такта выпуска в сочетании с недостаточной скоростью выхлопных газов и, следовательно, энергией) при низких оборотах для поддержания правильного направления потока. В таких ситуациях остаточные выхлопные газы проходят через впускной клапан в систему впуска и "разбавляют" поступающую смесь, результатом чего становится неустойчивая работа и сильное уменьшение мощности на низких оборотах. Однако на высоких оборотах увеличенные такты работы клапанов являются как раз тем, что надо. Увеличенная длительность такта впуска позволяет лучше наполнять цилиндр, а увеличенная длительность такта выпуска эффективнее удаляет выхлопные газы. Вдобавок к этому, увеличенное перекрытие клапанов может добавить легкий эффект наддува путем втягивания большего количества свежей смеси в цилиндр, чем поступало бы в цилиндр при работе одного только поршня.
К сожалению, при высоких оборотах двигателя очень раннее открывание впускного клапана и большое перекрытие клапанов может привести к другой неприятности. Если выпускная система настроена правильно и "всасывание" от продувки высоко, то у потока может быть настолько высокая энергия, что исходная поступающая рабочая смесь может прорываться в цилиндре поперек камеры сгорания и выходить наружу через выпускной канал. Это попусту расходует топливо и серьезно влияет на длительность пробега гоночного автомобиля на одной заправке, хотя и не уменьшает мощность.
Широкая кривая мощности необходима для работы двигателя при трогании с места, особенно у автомобиля с автоматической трансмиссией. Так как большинство распредвалов, разработанных для этих применений, практически не имеет нежелательных характеристик (большая продолжительность тактов и перекрытия клапанов), то вы застрахованы от плохого выбора в этой области, в крайнем случае, ошибка будет невелика.
Как выбрать распределительный вал
Выбор требуемого распредвала следует начинать с принятия двух важных решений:
· определения основного рабочего диапазона мощности двигателя;
· как долго распредвал должен работать.
Важность последнего фактора особенно уместна, когда выбирается распредвал с жесткими или гидравлическими плоскими толкателями, в частности, для применений на популярных "коротких" блоках "Шевроле" и некоторых других высокооборотистых двигателях V8.
Максимальные обороты двигателя и надежность
Во-первых, давайте проверим, как мы определим рабочий диапазон оборотов, и как выбор распредвала определяется этим выбором. Максимальные обороты двигателя обычно легко выделить, т.-к. они непосредственно влияют на надежность, в частности, когда главные детали "короткого" блока являются обычными. Основные данные, представленные в таблице, были получены из большого числа результатов испытаний на стендах сотен построенных двигателей.
Выделенные жирным шрифтом значения оборотов (левые значения) относятся к длинноходным двигателям, а значения оборотов, напечатанные обычным шрифтом (правые значения) соответствуют оборотам для типичных "коротких" блоков (короткоходные двигатели).
Имейте в виду, что эти рекомендации являются общими. Один двигатель может держаться намного лучше, чем другой в любой категории. То, как часто двигатель разгоняется до максимальных оборотов, является также очень важным.


Назад

На главную

Hosted by uCoz